Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 435
Filtrar
1.
J Integr Plant Biol ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38629459

RESUMO

Most mechanistic details of chronologically ordered regulation of leaf senescence are unknown. Regulatory networks centered on AtWRKY53 are crucial for orchestrating and integrating various senescence-related signals. Notably, AtWRKY53 binds to its own promoter and represses transcription of AtWRKY53, but the biological significance and mechanism underlying this self-repression remain unclear. In this study, we identified the VQ motif-containing protein AtVQ25 as a cooperator of AtWRKY53. The expression level of AtVQ25 peaked at mature stage and was specifically repressed after the onset of leaf senescence. AtVQ25-overexpressing plants and atvq25 mutants displayed precocious and delayed leaf senescence, respectively. Importantly, we identified AtWRKY53 as an interacting partner of AtVQ25. We determined that interaction between AtVQ25 and AtWRKY53 prevented AtWRKY53 from binding to W-box elements on the AtWRKY53 promoter and thus counteracted the self-repression of AtWRKY53. In addition, our RNA-sequencing data revealed that the AtVQ25-AtWRKY53 module is related to the salicylic acid (SA) pathway. Precocious leaf senescence and SA-induced leaf senescence in AtVQ25-overexpressing lines were inhibited by an SA pathway mutant, atsid2, and NahG transgenic plants; AtVQ25-overexpressing/atwrky53 plants were also insensitive to SA-induced leaf senescence. Collectively, we demonstrated that AtVQ25 directly attenuates the self-repression of AtWRKY53 during the onset of leaf senescence, which is substantially helpful for understanding the timing of leaf senescence onset modulated by AtWRKY53.

2.
ACS Appl Mater Interfaces ; 16(15): 19359-19368, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38568140

RESUMO

Wearable sensors utilize changes in color as a response to physiological stimuli, making them easily recognizable by the naked eye. These colorimetric wearable sensors offer benefits such as easy readability, rapid responsiveness, cost-effectiveness, and straightforward manufacturing techniques. However, their applications in detecting volatile organic compounds (VOCs) in situ have been limited due to the low concentration of complex VOCs and complicated external interferences. Aiming to address these challenges, we introduced readable and wearable colorimetric sensing arrays with a microchannel structure and highly gas-sensitive materials for in situ detection of complex VOCs. The highly gas-sensitive materials were designed by loading gas-sensitive dyes into the porous metal-organic frameworks and further depositing the composites on the electrospun nanofiber membrane. The colorimetric sensor arrays were fabricated using various gas-sensitive composites, including eight dye/MOF composites that respond to various VOCs and two Pd2+/dye/MOF composites that respond to ethylene. This enables the specific recognition of multiple characteristic VOCs. A microfluidic channel made of polydimethylsiloxane (PDMS) was integrated with different colorimetric elements to create a wearable sensor array. It was attached to the surface of fruits to collect and monitor VOCs using the DenseNet classification method. As a proof of concept, we demonstrated the feasibility of the wearable sensing system in monitoring the ripening process of fruits by continuously measuring the VOC emissions from the skin of the fruit.


Assuntos
Compostos Orgânicos Voláteis , Dispositivos Eletrônicos Vestíveis , Colorimetria/métodos , Compreensão , Pele , Corantes
3.
Artigo em Inglês | MEDLINE | ID: mdl-38619440

RESUMO

BACKGROUND: Lupus erythematosus (LE) is a spectrum of autoimmune diseases. Due to the complexity of cutaneous LE (CLE), clinical skin image-based artificial intelligence is still experiencing difficulties in distinguishing subtypes of LE. OBJECTIVES: We aim to develop a multimodal deep learning system (MMDLS) for human-AI collaboration in diagnosis of LE subtypes. METHODS: This is a multi-centre study based on 25 institutions across China to assist in diagnosis of LE subtypes, other eight similar skin diseases and healthy subjects. In total, 446 cases with 800 clinical skin images, 3786 multicolor-immunohistochemistry (multi-IHC) images and clinical data were collected, and EfficientNet-B3 and ResNet-18 were utilized in this study. RESULTS: In the multi-classification task, the overall performance of MMDLS on 13 skin conditions is much higher than single or dual modals (Sen = 0.8288, Spe = 0.9852, Pre = 0.8518, AUC = 0.9844). Further, the MMDLS-based diagnostic-support help improves the accuracy of dermatologists from 66.88% ± 6.94% to 81.25% ± 4.23% (p = 0.0004). CONCLUSIONS: These results highlight the benefit of human-MMDLS collaborated framework in telemedicine by assisting dermatologists and rheumatologists in the differential diagnosis of LE subtypes and similar skin diseases.

4.
Adv Sci (Weinh) ; : e2400207, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38655847

RESUMO

Wearable sensors hold immense potential for real-time and non-destructive sensing of volatile organic compounds (VOCs), requiring both efficient sensing performance and robust mechanical properties. However, conventional colorimetric sensor arrays, acting as artificial olfactory systems for highly selective VOC profiling, often fail to meet these requirements simultaneously. Here, a high-performance wearable sensor array for VOC visual detection is proposed by extrusion printing of hybrid inks containing surface-functionalized sensing materials. Surface-modified hydrophobic polydimethylsiloxane (PDMS) improves the humidity resistance and VOC sensitivity of PDMS-coated dye/metal-organic frameworks (MOFs) composites. It also enhances their dispersion within liquid PDMS matrix, thereby promoting the hybrid liquid as high-quality extrusion-printing inks. The inks enable direct and precise printing on diverse substrates, forming a uniform and high particle-loading (70 wt%) film. The printed film on a flexible PDMS substrate demonstrates satisfactory flexibility and stretchability while retaining excellent sensing performance from dye/MOFs@PDMS particles. Further, the printed sensor array exhibits enhanced sensitivity to sub-ppm VOC levels, remarkable resistance to high relative humidity (RH) of 90%, and the differentiation ability for eight distinct VOCs. Finally, the wearable sensor proves practical by in situ monitoring of wheat scab-related VOC biomarkers. This study presents a versatile strategy for designing effective wearable gas sensors with widespread applications.

5.
J Pharm Anal ; 14(3): 401-415, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38618249

RESUMO

Activation of nuclear factor erythroid 2-related factor 2 (Nrf2) by Kelch-like ECH-associated protein 1 (Keap1) alkylation plays a central role in anti-inflammatory therapy. However, activators of Nrf2 through alkylation of Keap1-Kelch domain have not been identified. Deoxynyboquinone (DNQ) is a natural small molecule discovered from marine actinomycetes. The current study was designed to investigate the anti-inflammatory effects and molecular mechanisms of DNQ via alkylation of Keap1. DNQ exhibited significant anti-inflammatory properties both in vitro and in vivo. The pharmacophore responsible for the anti-inflammatory properties of DNQ was determined to be the α, ß-unsaturated amides moieties by a chemical reaction between DNQ and N-acetylcysteine. DNQ exerted anti-inflammatory effects through activation of Nrf2/ARE pathway. Keap1 was demonstrated to be the direct target of DNQ and bound with DNQ through conjugate addition reaction involving alkylation. The specific alkylation site of DNQ on Keap1 for Nrf2 activation was elucidated with a synthesized probe in conjunction with liquid chromatography-tandem mass spectrometry. DNQ triggered the ubiquitination and subsequent degradation of Keap1 by alkylation of the cysteine residue 489 (Cys489) on Keap1-Kelch domain, ultimately enabling the activation of Nrf2. Our findings revealed that DNQ exhibited potent anti-inflammatory capacity through α, ß-unsaturated amides moieties active group which specifically activated Nrf2 signal pathway via alkylation/ubiquitination of Keap1-Kelch domain, suggesting the potential values of targeting Cys489 on Keap1-Kelch domain by DNQ-like small molecules in inflammatory therapies.

6.
Neural Netw ; 175: 106274, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38583264

RESUMO

In this paper, an adjustable Q-learning scheme is developed to solve the discrete-time nonlinear zero-sum game problem, which can accelerate the convergence rate of the iterative Q-function sequence. First, the monotonicity and convergence of the iterative Q-function sequence are analyzed under some conditions. Moreover, by employing neural networks, the model-free tracking control problem can be overcome for zero-sum games. Second, two practical algorithms are designed to guarantee the convergence with accelerated learning. In one algorithm, an adjustable acceleration phase is added to the iteration process of Q-learning, which can be adaptively terminated with convergence guarantee. In another algorithm, a novel acceleration function is developed, which can adjust the relaxation factor to ensure the convergence. Finally, through a simulation example with the practical physical background, the fantastic performance of the developed algorithm is demonstrated with neural networks.

8.
BMJ Open ; 14(4): e084376, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38658006

RESUMO

OBJECTIVE: Limited research has been conducted on the correlation between apparent temperature and acute myocardial infarction (AMI), as well as the potential impact of air pollutants in modifying this relationship. The objective of this study is to investigate the lagged effect of apparent temperature on AMI and assess the effect modification of environmental pollutants on this association. DESIGN: A time-series study. SETTING AND PARTICIPANTS: The data for this study were obtained from the Academy of Medical Data Science at Chongqing Medical University, covering daily hospitalisations for AMI between 1 January 2015 and 31 December 2016. Meteorological and air pollutant data were provided by China's National Meteorological Information Centre. OUTCOME MEASURES: We used a combined approach of quasi-Poisson generalised linear model and distributed lag non-linear model to thoroughly analyse the relationships. Additionally, we employed a generalised additive model to investigate the interaction between air pollutants and apparent temperature on the effect of AMI. RESULT: A total of 872 patients admitted to hospital with AMI were studied based on the median apparent temperature (20.43°C) in Chongqing. Low apparent temperature (10th, 7.19℃) has obvious lagged effect on acute myocardial infarction, first appearing on the 8th day (risk ratio (RR) 1.081, 95% CI 1.010 to 1.158) and the greatest risk on the 11th day (RR 1.094, 95% CI 1.037 to 1.153). No lagged effect was observed at high apparent temperature. In subgroup analysis, women and individuals aged 75 and above were at high risk. The interaction analysis indicates that there exist significant interactions between PM2.5 and high apparent temperature, as well as nitrogen dioxide (NO2) and low apparent temperature. CONCLUSION: The occurrence of decreased apparent temperature levels was discovered to be linked with a heightened relative risk of hospitalisations for AMI. PM2.5 and NO2 have an effect modification on the association between apparent temperature and admission rate of AMI.


Assuntos
Poluentes Atmosféricos , Hospitalização , Infarto do Miocárdio , Temperatura , Humanos , Infarto do Miocárdio/epidemiologia , China/epidemiologia , Feminino , Masculino , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Pessoa de Meia-Idade , Idoso , Hospitalização/estatística & dados numéricos , Material Particulado/efeitos adversos , Poluição do Ar/efeitos adversos , Fatores de Risco , Exposição Ambiental/efeitos adversos
9.
Microbes Infect ; : 105331, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38537769

RESUMO

Bats are important mammal reservoirs of zoonotic pathogens. However, due to research limitations involving species, locations, pathogens, or sample types, the full diversity of viruses in bats remains to be discovered. We used next-generation sequencing technology to characterize the mammalian virome and analyze the phylogenetic evolution and diversity of mammalian viruses carried by bats from Haikou City and Tunchang County in Hainan Province, China. We collected 200 pharyngeal swab and anal swab samples from Rhinolophus affinis, combining them into nine pools based on the sample type and collection location. We subjected the samples to next-generation sequencing and conducted bioinformatics analysis. All samples were screened via specific PCR and phylogenetic analysis. The diverse viral reads, closely related to mammals, were assigned into 17 viral families. We discovered many novel bat viruses and identified some closely related to known human/animal pathogens. In the current study, 6 complete genomes and 2 partial genomic sequences of 6 viral families and 8 viral genera have been amplified, among which 5 strains are suggested to be new virus species. These included coronavirus, pestivirus, bastrovirus, bocavirus, papillomavirus, parvovirus, and paramyxovirus. The primary finding is that a SADS-related CoV and a HoBi-like pestivirus identified in R. affinis in Hainan Province could be pathogenic to livestock. This study expands our understanding of bats as a virus reservoir, providing a basis for further research on the transmission of viruses from bats to humans.

10.
Sleep Med ; 117: 123-130, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38531167

RESUMO

STUDY OBJECTIVES: To systemically describe the clinical features, polysomnography (PSG) finding, laboratory tests and single-nucleotide polymorphisms (SNPs) in a clinic based Chinese primary restless legs syndrome (RLS) population. METHODS: This observational study, conducted from January 2020 to October 2021 across 22 sleep labs in China, recruited 771 patients diagnosed with RLS following the 2014 RLSSG criteria. Clinical data, PSG testing, and laboratory examination and SNPs of patients with RLS were collected. A total of 32 SNPs in 24 loci were replicated using the Asian Screening Array chip, employing data from the Han Chinese Genomes Initiative as controls. RESULTS: In this study with 771 RLS patients, 645 had primary RLS, and 617 has DNA available for SNP study. Among the 645 primary RLS, 59.7% were women. 33% had a family history of RLS, with stronger familial influence in early-onset cases. Clinical evaluations showed 10.4% had discomfort in body parts other than legs. PSG showed that 57.1% of RLS patients had periodic leg movement index (PLMI) of >5/h and 39.1% had PLMI >15/h, respectively; 73.8% of RLS patients had an Apnea-Hypopnea Index (AHI) > 5/h, and 45.3% had an AHI >15/h. The laboratory examinations revealed serum ferritin levels <75 ng/ml in 31.6%, and transferrin saturation (TSAT) of <45% in 88.7% of RLS patients. Seven new SNPs in 5 genes showed a significant allelic association with Chinese primary RLS, with one previously reported (BTBD9) and four new findings (TOX3, PRMT6, DCDC2C, NOS1). CONCLUSIONS: Chinese RLS patients has specific characters in many aspects. A high family history with RLS not only indicates strong genetic influence, but also reminds us to consider the familial effect in the epidemiological study. Newly developed sequencing technique with large samples remains to be done.


Assuntos
Síndrome das Pernas Inquietas , Humanos , Feminino , Masculino , Polissonografia , Síndrome das Pernas Inquietas/epidemiologia , Sono , Perna (Membro) , China , Proteínas Nucleares , Proteína-Arginina N-Metiltransferases
11.
BMC Vet Res ; 20(1): 110, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38500105

RESUMO

BACKGROUND: Traumatic brain injury (TBI) is a common condition in veterinary medicine that is difficult to manage.Veterinary regenerative therapy based on adipose mesenchymal stem cells seem to be an effective strategy for the treatment of traumatic brain injury. In this study, we evaluated therapeutic efficacy of canine Adipose-derived mesenchymal stem cells (AD-MSCs)in a rat TBI model, in terms of improved nerve function and anti-neuroinflammation. RESULTS: Canine AD-MSCs promoted neural functional recovery, reduced neuronal apoptosis, and inhibited the activation of microglia and astrocytes in TBI rats. According to the results in vivo, we further investigated the regulatory mechanism of AD-MSCs on activated microglia by co-culture in vitro. Finally, we found that canine AD-MSCs promoted their polarization to the M2 phenotype, and inhibited their polarization to the M1 phenotype. What's more, AD-MSCs could reduce the migration, proliferation and Inflammatory cytokines of activated microglia, which is able to inhibit inflammation in the central system. CONCLUSIONS: Collectively, the present study demonstrates that transplantation of canine AD-MSCs can promote functional recovery in TBI rats via inhibition of neuronal apoptosis, glial cell activation and central system inflammation, thus providing a theoretical basis for canine AD-MSCs therapy for TBI in veterinary clinic.


Assuntos
Lesões Encefálicas Traumáticas , Doenças do Cão , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Doenças dos Roedores , Ratos , Animais , Cães , Lesões Encefálicas Traumáticas/terapia , Lesões Encefálicas Traumáticas/veterinária , Microglia , Macrófagos , Inflamação/veterinária , Transplante de Células-Tronco Mesenquimais/veterinária , Transplante de Células-Tronco Mesenquimais/métodos
12.
Front Nutr ; 11: 1353956, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38445205

RESUMO

Background: This study aims to investigate the relationship between blood urea nitrogen to serum albumin ratio (BAR) and all-cause mortality in patients with acute kidney injury (AKI) and evaluate the effect of BAR on the prognosis of AKI. Methods: Adult patients with AKI admitted to the ICU in the Medical Information Mart for Intensive Care IV (MIMIC-IV) were selected in a retrospective cohort study. BAR (mg/g) was calculated using initial blood urea nitrogen (mg/dl)/serum albumin (g/dl). According to the BAR, these patients were divided into quartiles (Q1-Q4). Kaplan-Meier analysis was used to compare the mortality of the above four groups. Multivariate Cox regression analysis was used to evaluate the association between BAR and 28-day mortality and 365-day mortality. The receiver operating characteristic (ROC) curve was plotted and the area under the curve (AUC) was calculated, and the subgroup analysis was finally stratified by relevant covariates. Results: A total of 12,125 patients with AKI were included in this study. The 28-day and 365-day mortality rates were 23.89 and 39.07%, respectively. Kaplan-Meier analysis showed a significant increase in all-cause mortality in patients with high BAR (Log-rank p < 0.001). Multivariate Cox regression analysis showed that BAR was an independent risk factor for 28-day mortality (4.32 < BAR≤7.14: HR 1.12, 95% CI 0.97-1.30, p = 0.114; 7.14 < BAR≤13.03: HR 1.51, 95% CI 1.31-1.75, p < 0.001; BAR>13.03: HR 2.07, 95% CI 1.74-2.47, p < 0.001; Reference BAR≤4.32) and 365-day mortality (4.32 < BAR≤7.14: HR 1.22, 95% CI 1.09-1.36, p < 0.001; 7.14 < BAR≤13.03: HR 1.63, 95% CI 1.46-1.82, p < 0.001; BAR>13.03: HR 2.22, 95% CI 1.93-2.54, p < 0.001; Reference BAR ≤ 4.32) in patients with AKI. The AUC of BAR for predicting 28-day mortality and 365-day mortality was 0.649 and 0.662, respectively, which is better than that of blood urea nitrogen and sequential organ failure assessment. In addition, subgroup analysis showed a stable relationship between BAR and adverse outcomes in patients with AKI. Conclusion: BAR is significantly associated with increased all-cause mortality in patients with AKI. This finding suggests that BAR may help identify people with AKI at high risk of mortality.

13.
Foods ; 13(5)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38472906

RESUMO

Artificial scent screening systems, inspired by the mammalian olfactory system, hold promise for fruit ripeness detection, but their commercialization is limited by low sensitivity or pattern recognition inaccuracy. This study presents a portable fruit ripeness prediction system based on colorimetric sensing combinatorics and deep convolutional neural networks (DCNN) to accurately identify fruit ripeness. Using the gas chromatography-mass spectrometry (GC-MS) method, the study discerned the distinctive gases emitted by mango, peach, and banana across various ripening stages. The colorimetric sensing combinatorics utilized 25 dyes sensitive to fruit volatile gases, generating a distinct scent fingerprint through cross-reactivity to diverse concentrations and varieties of gases. The unique scent fingerprints can be identified using DCNN. After capturing colorimetric sensor image data, the densely connected convolutional network (DenseNet) was employed, achieving an impressive accuracy rate of 97.39% on the validation set and 82.20% on the test set in assessing fruit ripeness. This fruit ripeness prediction system, coupled with a DCNN, successfully addresses the issues of complex pattern recognition and low identification accuracy. Overall, this innovative tool exhibits high accuracy, non-destructiveness, practical applicability, convenience, and low cost, making it worth considering and developing for fruit ripeness detection.

14.
J Am Heart Assoc ; 13(3): e029427, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38293915

RESUMO

BACKGROUND: The right ventricle (RV) is at risk in patients with complex congenital heart disease involving right-sided obstructive lesions. We have shown that capillary rarefaction occurs early in the pressure-loaded RV. Here we test the hypothesis that microRNA (miR)-34a, which is induced in RV hypertrophy and RV failure (RVF), blocks the hypoxia-inducible factor-1α-vascular endothelial growth factor (VEGF) axis, leading to the attenuated angiogenic response and increased susceptibility to RV failure. METHODS AND RESULTS: Mice underwent pulmonary artery banding to induce RV hypertrophy and RVF. Capillary rarefaction occurred immediately. Although hypoxia-inducible factor-1α expression increased (0.12±0.01 versus 0.22±0.03, P=0.05), VEGF expression decreased (0.61±0.03 versus 0.22±0.05, P=0.01). miR-34a expression was most upregulated in fibroblasts (4-fold), but also in cardiomyocytes and endothelial cells (2-fold). Overexpression of miR-34a in endothelial cells increased cell senescence (10±3% versus 22±2%, P<0.05) by suppressing sirtulin 1 expression, and decreased tube formation by 50% via suppression of hypoxia-inducible factor-1α, VEGF A, VEGF B, and VEGF receptor 2. miR-34a was induced by stretch, transforming growth factor-ß1, adrenergic stimulation, and hypoxia in cardiac fibroblasts and cardiomyocytes. In mice with RVF, locked nucleic acid-antimiR-34a improved RV shortening fraction and survival half-time and restored capillarity and VEGF expression. In children with congenital heart disease-related RVF, RV capillarity was decreased and miR-34a increased 5-fold. CONCLUSIONS: In summary, miR-34a from fibroblasts, cardiomyocytes, and endothelial cells mediates capillary rarefaction by suppressing the hypoxia-inducible factor-1α-VEGF axis in RV hypertrophy/RVF, raising the potential for anti-miR-34a therapeutics in patients with at-risk RVs.


Assuntos
Cardiopatias Congênitas , Insuficiência Cardíaca , MicroRNAs , Rarefação Microvascular , Criança , Humanos , Camundongos , Animais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Células Endoteliais/metabolismo , 60489 , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Rarefação Microvascular/metabolismo , Insuficiência Cardíaca/metabolismo , Hipertrofia Ventricular Direita , Miócitos Cardíacos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Cardiopatias Congênitas/metabolismo
15.
Nat Commun ; 15(1): 950, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38296939

RESUMO

The CRISPR-Cas9 system offers substantial potential for cancer therapy by enabling precise manipulation of key genes involved in tumorigenesis and immune response. Despite its promise, the system faces critical challenges, including the preservation of cell viability post-editing and ensuring safe in vivo delivery. To address these issues, this study develops an in vivo CRISPR-Cas9 system targeting tumor-associated macrophages (TAMs). We employ bacterial protoplast-derived nanovesicles (NVs) modified with pH-responsive PEG-conjugated phospholipid derivatives and galactosamine-conjugated phospholipid derivatives tailored for TAM targeting. Utilizing plasmid-transformed E. coli protoplasts as production platforms, we successfully load NVs with two key components: a Cas9-sgRNA ribonucleoprotein targeting Pik3cg, a pivotal molecular switch of macrophage polarization, and bacterial CpG-rich DNA fragments, acting as potent TLR9 ligands. This NV-based, self-assembly approach shows promise for scalable clinical production. Our strategy remodels the tumor microenvironment by stabilizing an M1-like phenotype in TAMs, thus inhibiting tumor growth in female mice. This in vivo CRISPR-Cas9 technology opens avenues for cancer immunotherapy, overcoming challenges related to cell viability and safe, precise in vivo delivery.


Assuntos
Sistemas CRISPR-Cas , Neoplasias , Feminino , Camundongos , Animais , Sistemas CRISPR-Cas/genética , Protoplastos , RNA Guia de Sistemas CRISPR-Cas , Macrófagos Associados a Tumor , Escherichia coli/genética , Neoplasias/genética , Neoplasias/terapia , Imunoterapia , Fosfolipídeos , Microambiente Tumoral
16.
Sleep Med ; 114: 109-118, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38181582

RESUMO

BACKGROUND: The pathophysiology of coronasomnia remains unclear. This study aimed to investigate changes in white matter (WM) microstructure and inflammatory factors in patients with sleep disorders (SD) characterized by poor sleep quantity, quality, or timing following coronavirus disease 2019 (COVID-19) infection in the acute phase (within one month) and whether these changes could be recovered at 3-month follow-up. METHODS: 29 acute COVID-19 patients with SD (COVID_SD) and 27 acute COVID-19 patients without SD (COVID_NonSD) underwent diffusion tensor imaging (DTI), tested peripheral blood inflammatory cytokines level, and measured Pittsburgh Sleep Quality Index (PSQI), and matched 30 uninfected healthy controls. Analyzed WM abnormalities between groups in acute phase and explored its changes in COVID_SD at 3-month follow-up by using tract-based spatial statistics (TBSS). Correlations between DTI and clinical data were examined using Spearman partial correlation analysis. RESULTS: Both COVID_SD and COVID_NonSD exhibited widespread WM microstructure abnormalities. The COVID_SD group showed specific WM microstructure changes in right inferior fronto-occipital fasciculus (IFOF) (lower fractional anisotropy [FA]/axial diffusivity [AD] and higher radial diffusivity [RD]) and left corticospinal tract (CST) (higher FA and lower RD) and higher interleukin-1ß (IL-1ß) compared with COVID_NonSD group. These WM abnormalities and IL-1ß levels were correlated PSQI score. After 3 months, the IFOF integrity and IL-1ß levels tended to return to normal accompanied by symptom improvement in the COVID_SD relative to baseline. CONCLUSION: Abnormalities in right IFOF and left CST and elevated IL-1ß levels were important neurophenotypes correlated with COVID_SD, which might provide new insights into the pathogenesis of neuroinflammation in SD patients induced by COVID-19.


Assuntos
COVID-19 , Distúrbios do Início e da Manutenção do Sono , Substância Branca , Humanos , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Imagem de Tensor de Difusão/métodos , Fibras Nervosas , Encéfalo/diagnóstico por imagem , Encéfalo/patologia
17.
J Ethnopharmacol ; 321: 117520, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38042389

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Proteinuria is recognized as a risk factor for the exacerbation of chronic kidney disease. Modified Huangqi Chifeng decoction (MHCD) has distinct advantages in reducing proteinuria. Our previous experimental results have shown that MHCD can inhibit excessive autophagy. However, the specific mechanism by which MHCD regulates autophagy needs to be further explored. AIM OF THE STUDY: In this study, in vivo and in vitro experiments were conducted to further clarify the protective mechanism of MHCD on the kidney and podocytes by regulating autophagy based on phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) and adenosine monophosphate-activated protein kinase (AMPK)/mTOR signaling pathways. MATERIALS AND METHODS: By a single injection via the tail vein, Sprague-Dawley rats received Adriamycin (5 mg/kg) to establish a model of proteinuria nephropathy. They were divided into control, model, MHCD, 3-methyladenine (3 MA), 3 MA + MHCD, and telmisartan groups and were administered continuously for 6 weeks. The MHCD-containing serum was prepared, and a model of podocyte injury induced by Adriamycin (0.2 µg/mL) was established. RESULTS: MHCD reduced the 24-h urine protein levels and relieved pathological kidney damage. During autophagy in the kidneys of rats with Adriamycin-induced nephropathy, the PI3K/AKT/mTOR signaling pathway is inhibited, while the AMPK/mTOR signaling pathway is activated. MHCD antagonized these effects, thereby inhibiting excessive autophagy. MHCD alleviated Adriamycin-induced podocyte autophagy, as demonstrated using Pik3r1 siRNA and an overexpression plasmid for Prkaa1/Prkaa2. Furthermore, MHCD could activate the PI3K/AKT/mTOR signaling pathway while suppressing the AMPK/mTOR signaling pathway. CONCLUSIONS: This study demonstrated that MHCD can activate the interaction between the PI3K/AKT/mTOR and the AMPK/mTOR signaling pathways to maintain autophagy balance, inhibit excessive autophagy, and play a role in protecting the kidneys and podocytes.


Assuntos
Nefropatias , Podócitos , Ratos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Ratos Sprague-Dawley , Serina-Treonina Quinases TOR/metabolismo , Nefropatias/induzido quimicamente , Nefropatias/tratamento farmacológico , Nefropatias/metabolismo , Proteinúria/induzido quimicamente , Proteinúria/tratamento farmacológico , Proteinúria/metabolismo , Autofagia , Doxorrubicina/farmacologia , Mamíferos/metabolismo
18.
Phytomedicine ; 123: 155196, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37952410

RESUMO

BACKGROUND: With the increasing prevalence of hypertension, diabetes, and obesity, the incidence of kidney diseases is also increasing, resulting in a serious public burden. Conventional treatments for kidney diseases have unsatisfactory effects and are associated with adverse reactions. Traditional Chinese medicines have good curative effects and advantages over conventional treatments for preventing and treating kidney diseases. Astragali Radix is a Chinese herbal medicine widely used to treat kidney diseases. PURPOSE: To review the potential applications and molecular mechanisms underlying the renal protective effects of Astragali Radix and its components and to provide direction and reference for new therapeutic strategies and future research and development of Astragali Radix. STUDY DESIGN AND METHODS: PubMed, Google Scholar, and Web of Science were searched using keywords, including "Astragali Radix," "Astragalus," "Astragaloside IV" (AS-IV), "Astragali Radix polysaccharide" (APS), and "kidney diseases." Reports on the effects of Astragali Radix and its components on kidney diseases were identified and reviewed. RESULTS: The main components of Astragali Radix with kidney-protective properties include AS-IV, APS, calycosin, formononetin, and hederagenin. Astragali Radix and its active components have potential pharmacological effects for the treatment of kidney diseases, including acute kidney injury, diabetic nephropathy, hypertensive renal damage, chronic glomerulonephritis, and kidney stones. The pharmacological effects of Astragali Radix are manifested through the inhibition of inflammation, oxidative stress, fibrosis, endoplasmic reticulum stress, apoptosis, and ferroptosis, as well as the regulation of autophagy. CONCLUSION: Astragali Radix is a promising drug candidate for treating kidney diseases. However, current research is limited to animal and cell studies, underscoring the need for further verifications using high-quality clinical data.


Assuntos
Astrágalo , Medicamentos de Ervas Chinesas , Nefropatias , Saponinas , Triterpenos , Animais , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Medicina Tradicional Chinesa , Raízes de Plantas , Inflamação , Nefropatias/tratamento farmacológico
19.
Eur Radiol ; 34(2): 823-832, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37624413

RESUMO

OBJECTIVES: To explore the clinical relevance of stent-specific perivascular fat attenuation index (FAI) in patients with stent implantation. METHODS: A total of 162 consecutive patients who underwent coronary computed tomography angiography (CCTA) following stent implantation were retrospectively included. The stent-specific FAI at 2 cm adjacent to the stent edge was calculated. The endpoints were defined as target vessel revascularization (TVR) on the stented vessel after CCTA and readmission times due to chest pain after stent implantation. Binary logistic regression analysis for TVR and ordinal regression models were conducted to identify readmission times (0, 1, and ≥ 2) with generalized estimating equations on a per-stent basis. RESULTS: On a per-stent basis, 9 stents (4.5%) experienced TVR after PCI at a median 30 months' follow-up duration. Stent-specific FAI differed significantly among subgroups of patients with stent implantation and different readmission times (p = 0.002); patients with at least one readmission had higher stent-specific FAI than those without readmission (p < 0.001). Bifurcated stents (odds ratio [OR]: 11.192, p = 0.001) and stent-specific FAI (OR: 1.189, p = 0.04) were independently associated with TVR. With no readmission as a reference, stent-specific FAI (OR: 0.984, p = 0.007) was an independent predictor for hospital readmission times ≥ 2 (p = 0.003). CONCLUSION: Non-invasive stent-specific FAI derived from CCTA was found to be associated with TVR, which was a promising imaging marker for functional assessment in patients who underwent stent implantation. CLINICAL RELEVANCE STATEMENT: Noninvasive fat attenuation index adjacent to the stents edge derived from CCTA, an imaging marker reflecting the presence of inflammation acting on the neointimal tissue at the sites of coronary stenting, might be relevant clinically with target vessel revascularization. KEY POINTS: • Non-invasive stent-specific FAI derived from CCTA was associated with TVR (OR: 1.189 [95% CI: 1.007-1.043], p = 0.04) in patients who underwent stent implantation. • Stent-specific FAI significantly differed among a subgroup of patients with chest pain after stent implantation and with different readmission times (p = 0.002); the patients with at least one readmission had higher stent-specific FAI than those without readmission (p < 0.001). • Non-invasive stent-specific FAI derived from CCTA could be used as an imaging maker for the functional assessment of patients following stent implantation.


Assuntos
Doença da Artéria Coronariana , Intervenção Coronária Percutânea , Humanos , Doença da Artéria Coronariana/diagnóstico por imagem , Doença da Artéria Coronariana/cirurgia , Angiografia Coronária/métodos , Estudos Retrospectivos , Stents , Dor no Peito , Resultado do Tratamento
20.
Neurobiol Dis ; 190: 106375, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38092269

RESUMO

Patients with chronic pain often experience memory impairment, but the underlying mechanisms remain elusive. The myelin sheath is crucial for rapid and accurate action potential conduction, playing a pivotal role in the development of cognitive abilities in the central nervous system. The study reveals that myelin degradation occurs in the hippocampus of chronic constriction injury (CCI) mice, which display both chronic pain and memory impairment. Using fiber photometry, we observed diminished task-related neuronal activity in the hippocampus of CCI mice. Interestingly, the repeated administration with clemastine, which promotes myelination, counteracts the CCI-induced myelin loss and reduced neuronal activity. Notably, clemastine specifically ameliorates the impaired memory without affecting chronic pain in CCI mice. Overall, our findings highlight the significant role of myelin abnormalities in CCI-induced memory impairment, suggesting a potential therapeutic approach for treating memory impairments associated with neuropathic pain.


Assuntos
Dor Crônica , Clemastina , Humanos , Animais , Camundongos , Clemastina/metabolismo , Dor Crônica/tratamento farmacológico , Dor Crônica/metabolismo , Bainha de Mielina/metabolismo , Sistema Nervoso Central , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/etiologia , Transtornos da Memória/metabolismo , Hipocampo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...